20,918 research outputs found

    Field-induced structure transformation in electrorheological solids

    Full text link
    We have computed the local electric field in a body-centered tetragonal (BCT) lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local field strength. For the ground state of an electrorheological solid of hard spheres, we identified a novel structure transformation from the BCT to the face-centered cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard sphere constraint. In contrast to the previous results, the local field exhibits a non-monotonic transition from BCT to FCC. As c increases from the BCT ground state, the local field initially decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a maximum value and finally decreases to the FCC value. An experimental realization of the structure transformation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.

    Equivariant wave maps exterior to a ball

    Full text link
    We consider the exterior Cauchy-Dirichlet problem for equivariant wave maps from 3+1 dimensional Minkowski spacetime into the three-sphere. Using mixed analytical and numerical methods we show that, for a given topological degree of the map, all solutions starting from smooth finite energy initial data converge to the unique static solution (harmonic map). The asymptotics of this relaxation process is described in detail. We hope that our model will provide an attractive mathematical setting for gaining insight into dissipation-by-dispersion phenomena, in particular the soliton resolution conjecture.Comment: 16 pages, 9 figure

    Fermion Resonances on a Thick Brane with a Piecewise Warp Factor

    Full text link
    In this paper, we mainly investigate the problems of resonances of massive KK fermions on a single scalar constructed thick brane with a piecewise warp factor matching smoothly. The distance between two boundaries and the other parameters are determined by one free parameter through three junction conditions. For the generalized Yukawa coupling ηΨˉϕkΨ\eta\bar{\Psi}\phi^{k}\Psi with odd k=1,3,5,...k=1,3,5,..., the mass eigenvalue mm, width Γ\Gamma, lifetime τ\tau, and maximal probability PmaxP_{max} of fermion resonances are obtained. Our numerical calculations show that the brane without internal structure also favors the appearance of resonant states for both left- and right-handed fermions. The scalar-fermion coupling and the thickness of the brane influence the resonant behaviors of the massive KK fermions.Comment: V3: 15 pages, 7 figures, published versio

    Spin-one ferromagnets with single-ion anisotropy in a perpendicular external field

    Full text link
    In this paper, the conventional Holstein-Primakoff method is generalized with the help of the characteristic angle transformation [Lei Zhou and Ruibao Tao, J. Phys. A {\bf 27} 5599 (1994)] for the spin-one magnetic systems with single-ion anisotropies. We find that the weakness of the conventional method for such systems can be overcome by the new approach. Two models will be discussed to illuminate the main idea, which are the ``easy-plane" and the ``easy-axis" spin-one ferromagnet, respectively. Comparisons show that the current approach can give reasonable ground state properties for the magnetic system with ``easy-plane" anisotropy though the conventional method never can, and can give a better representation than the conventional one for the magnetic system with ``easy-axis" anisotropy though the latter is usually believed to be a good approximation in such case. Study of the easy-plane model shows that there is a phase transition induced by the external field, and the low-temperature specific heat may have a peak as the field reaches the critical value.Comment: Using LaTex. To be published in the September 1 issue of Physical Review B (1996). Email address: [email protected]

    Pressure Raman effects and internal stress in network glasses

    Get PDF
    Raman scattering from binary GexSe1-x glasses under hydrostatic pressure shows onset of a steady increase in the frequency of modes of corner-sharing GeSe4 tetrahedral units when the external pressure P exceeds a threshold value Pc. The threshold pressure Pc(x) decreases with x in the 0.15 < x < 0.20 range, nearly vanishes in the 0.20 < x < 0.25 range, and then increases in the 0.25 < x < 1/3 range. These Pc(x) trends closely track those in the non-reversing enthalpy, DHnr(x), near glass transitions (Tgs), and in particular, both DHnr(x) and Pc(x) vanish in the reversibility window (0.20 < x < 0.25). It is suggested that Pc provides a measure of stress at the Raman active units; and its vanishing in the reversibility window suggests that these units are part of an isostatically rigid backbone. Isostaticity also accounts for the non-aging behavior of glasses observed in the reversibility window

    Field-induced Tomonaga-Luttinger liquid phase of a two-leg spin-1/2 ladder with strong leg interactions

    Full text link
    We study the magnetic-field-induced quantum phase transition from a gapped quantum phase that has no magnetic long-range order into a gapless phase in the spin-1/2 ladder compound bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). At temperatures below about 1 K, the specific heat in the gapless phase attains an asymptotic linear temperature dependence, characteristic of a Tomonaga-Luttinger liquid. Inelastic neutron scattering and the specific heat measurements in both phases are in good agreement with theoretical calculations, demonstrating that DIMPY is the first model material for an S=1/2 two-leg spin ladder in the strong-leg regime.Comment: 4.1 pages, 4 figures (Fig. 4 updated), to appear in Physical Review Letter

    Self-Diffusion of a Polymer Chain in a Melt

    Full text link
    Self-diffusion of a polymer chain in a melt is studied by Monte Carlo simulations of the bond fluctuation model, where only the excluded volume interaction is taken into account. Polymer chains, each of which consists of NN segments, are located on an L×L×LL \times L \times L simple cubic lattice under periodic boundary conditions, where each segment occupies 2×2×22 \times 2 \times 2 unit cells. The results for N=32,48,64,96,128,192,256,384N=32, 48, 64, 96, 128, 192, 256, 384 and 512 at the volume fraction ϕ0.5\phi \simeq 0.5 are reported, where L=128L = 128 for N256N \leq 256 and L=192 for N384N \geq 384. The NN-dependence of the self-diffusion constant DD is examined. Here, DD is estimated from the mean square displacements of the center of mass of a single polymer chain at the times larger than the longest relaxation time. From the data for N=256N = 256, 384 and 512, the apparent exponent xdx_{\rm d}, which describes the apparent power law dependence of DD on NN as DNxdD \propto N^{- x_{\rm d}}, is estimated as xd2.4x_{\rm d} \simeq 2.4. The ratio Dτ/D \tau / seems to be a constant for N=192,256,384N = 192, 256, 384 and 512, where τ\tau and denote the longest relaxation time and the mean square end-to-end distance, respectively.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp

    On the determination of the deceleration parameter from Supernovae data

    Full text link
    Supernovae searches have shown that a simple matter-dominated and decelerating universe should be ruled out. However a determination of the present deceleration parameter q0q_0 through a simple kinematical description is not exempt of possible drawbacks. We show that, with a time dependent equation of state for the dark energy, a bias is present for q0q_0 : models which are very far from the so-called Concordance Model can be accommodated by the data and a simple kinematical analysis can lead to wrong conclusions. We present a quantitative treatment of this bias and we present our conclusions when a possible dynamical dark energy is taken into account.Comment: 4 pages, 3 figures, submitte

    Small ball probability, Inverse theorems, and applications

    Full text link
    Let ξ\xi be a real random variable with mean zero and variance one and A=a1,...,anA={a_1,...,a_n} be a multi-set in Rd\R^d. The random sum SA:=a1ξ1+...+anξnS_A := a_1 \xi_1 + ... + a_n \xi_n where ξi\xi_i are iid copies of ξ\xi is of fundamental importance in probability and its applications. We discuss the small ball problem, the aim of which is to estimate the maximum probability that SAS_A belongs to a ball with given small radius, following the discovery made by Littlewood-Offord and Erdos almost 70 years ago. We will mainly focus on recent developments that characterize the structure of those sets AA where the small ball probability is relatively large. Applications of these results include full solutions or significant progresses of many open problems in different areas.Comment: 47 page
    corecore